used to solve structure: SHELXTL (Sheldrick, 1996). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

The authors thank M. Raja, Scientist at SPIC Science Foundation, Chennai, and Professor K. K. Balasubramanian, Indian Institute of Technology, Chennai, for the synthesis and provision of the title compound. H-KF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. SSSR thanks the Universiti Sains Malaysia for a Visiting Post-Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1384). Services for accessing these data are described at the back of the journal.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996a). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SAINT Software Reference Manual. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin. USA.

Acta Cryst. (1999). C55, 766-768

Pipemidic acid hydrochloride \dagger

Hoong-Kun Fun, ${ }^{a}$ Kandasamy Chinnakali, ${ }^{a} \ddagger$ Ibrahim Abdul Razak, ${ }^{a}$ Shu-zhong Zhan, ${ }^{b}$ Chuan-jiang Hu ${ }^{b}$ and Qingin Meng ${ }^{b}$
${ }^{a}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{b}$ The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: hkfun@usm.my
(Received 17 November 1998; accepted 22 December 1998)

Abstract

The title compound exists as a $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}^{+}$cation and a Cl^{-}anion. The apical N atom of the piperazine ring shows quaternary character due to proton transfer

^[\dagger Alternative name: 4-(6-carboxy-8-ethyl-5,8-dihydropyrido[2,3-d]-pyrimidin-2-yl)piperazin-1-ium chloride. \ddagger On leave from: Department of Physics, Anna University, Chennai 600025 , India.]

from HCl . The fused pyridine and pyrimidine rings are nearly coplanar and the piperazine ring adopts a chair conformation. The carboxyl and carbonyl O atoms are involved in an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond and the Cl^{-}anion is involved in an $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular hydrogen bond with the quaternary N atom.

Comment

Metal ions play a vital role in intricate biological processes. The interaction of these ions with drugs administered for therapeutic reasons is a subject of considerable interest. It is known that some drugs act via chelation (Albert, 1979) or by way of inhibiting the formation of metallo enzymes (Hughes, 1981). For most of the drugs that could act as potential ligands little is known about the metal-binding influences on their activities. In order to understand drug-metal ion interactions further, we have been studying pipemidic acid and its analogues. These antibiotics are used in the clinical treatment of urinary-tract infections caused by Gram-negative bacteria (Shen \& Pernat, 1980). The X-ray structure determination of the title compound, (I), was carried out in order to elucidate the molecular conformation.

(1)

The asymmetric unit consists of a $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}^{+}$cation and a Cl^{-}anion. The piperazine N atom, N 17 , shows quaternary character due to proton transfer from $\mathbf{H C l}$. This is in contrast with the 'zwitterion' structure formed in pipemidic acid trihydrate (Fonseca et al., 1986) where

Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
the carboxyl group is deprotonated and the piperazine N atom is protonated. Bond lengths and angles in the fused ring and pyrimidine ring are comparable with those observed in the pipemidic acid trihydrate (Fonseca et al., 1986) and the C-O distances in the carboxylic group agree with the reported mean values (Allen et al., 1987). The C6-C11 distance [1.493(4) \AA] is slightly longer, which may be due to decreased resonance.
The pyridine ring is planar within ± 0.030 (3) \AA and it is nearly coplanar with the planar pyrimidine ring; the dihedral angle between these two rings is $1.3(1)^{\circ}$. The carboxyl group is slightly twisted out of the pyridine ring with an average torsion angle of $-7.2(4)^{\circ}$ around C6-C11. The piperazine ring adopts a chair conformation and the mean plane through that ring makes a dihedral angle of $52.8(1)^{\circ}$ with the pyrimidine ring.

In the cation, the carboxyl and carbonyl O atoms, O 12 and O20, are involved in an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond; in the asymmetric unit, the cation and anion are involved in an N17-H17A‥Cl1 hydrogen bond (Table 2). Along the b axis, the screw-related molecules are linked by N17-H17B \cdots Cl1 ${ }^{i}$ hydrogen bonds to form a double-column structure (Fig. 2). Within each column, the molecules translated along the b axis are stacked stepwise without any $\pi-\pi$ interactions and they are linked by weak $\mathrm{C} 22-\mathrm{H} 22 B \cdots \mathrm{O} 13^{\text {ii }}$ hydrogen bonds. The adjacent columns are linked by weak C 18 H18B $\cdots \mathrm{O}^{0^{i i i}}$ hydrogen bonds.

Fig. 2. Packing of the molecules viewed down the a axis.

Experimental

Single crystals of the title compound were obtained by slow evaporation of a solution of pipemidic acid in $10 \% \mathrm{HCl}$ at room temperature.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=339.78$
Orthorhombic
$P 2,2,2$,
$a=6.8228(1) \AA$
$b=7.1672(2) \AA$
$c=31.9396$ (6) \AA
$V=1561.86(6) \AA^{3}$
$Z=4$
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction:
empirical (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.896, T_{\text {max }}=0.953$
10332 measured reflections
2102 independent reflections (plus 1478 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.130$
$S=1.118$
3580 reflections
220 parameters

$$
\begin{aligned}
& \text { H atoms: see text } \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.06 P)^{2}\right. \\
\quad \\
\quad+0.7411 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 7398 reflections
$\theta=2.91-33.22^{\circ}$
$\mu=0.268 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.42 \times 0.26 \times 0.18 \mathrm{~mm}$
Colourless

3219 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 9$
$l=0 \rightarrow 41$

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

	$1.334(3)$	$\mathrm{N} 8-\mathrm{C} 21$	$1.478(2)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.338(3)$	$\mathrm{C} 11-\mathrm{O} 13$	$1.194(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.355(3)$	$\mathrm{C} 11-\mathrm{O} 12$	$1.324(5)$
$\mathrm{C} 2-\mathrm{N} 14$	$1.365(3)$	$\mathrm{N} 14-\mathrm{C} 15$	$1.459(3)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.317(4)$	$\mathrm{N} 14-\mathrm{C} 19$	$1.466(3)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.252(4)$	$\mathrm{C} 16-\mathrm{N} 17$	$1.494(4)$
$\mathrm{C} 5-\mathrm{O} 20$	$1.365(4)$	$\mathrm{N} 17-\mathrm{C} 18$	$1.499(4)$
$\mathrm{C} 7-\mathrm{N} 8$	$1.388(4)$		
$\mathrm{N} 8-\mathrm{C} 10$	$-7.9(5)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11-\mathrm{O} 12$	$-6.5(4)$

Table 2. Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right)$

$\quad D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 20$	0.82	1.79	$2.551(4)$	155
$\mathrm{~N} 17-\mathrm{H} 17 A \cdots \mathrm{Cl1}$	$1.02(3)$	$2.09(3)$	$3.104(3)$	$172(2)$
$\mathrm{N} 17-\mathrm{H} 17 B \cdots \mathrm{Cl1}$	$1.02(3)$	$2.07(3)$	$3.083(2)$	$170(3)$

C22—H22B $\cdots \mathrm{O} 13^{\text {ii }}$	0.96	2.42	$3.328(6)$	157
C18—H18B $\cdots \mathrm{O} 20^{\mathrm{iii}}$	0.96	2.41	$3.168(4)$	135
C7—H7A $\cdots \mathrm{Ol}^{\text {iv }}$	0.93	2.54	$3.405(4)$	156

Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x, y-1, z$; (iii) $x-1, y-1, z$; (iv) $x-\frac{1}{2}, \frac{3}{2}-y,-z$.

The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle (0,88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating 30 initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. After checking the presence of all H atoms in the difference map, the H atoms belonging to the C and hydroxyl O atoms were geometrically fixed and allowed to ride on the parent atoms. Rotating group refinement was used for the methyl and OH groups. In order to allow slightly longer N -H distances upon protonation, the H atoms of N 17 were initially isotropically refined, but the N17-H17A [1.08 (3) \AA] distance was found to be longer than that of N17-H17B [0.88 (4) \AA]. Hence the N-H distances were restrained by refining them as a free variable (using DFIX21 for N17, H17A, N17, H17B) and the final N-H distance was found to be 1.02 (3) \AA. This value is in agreement with those observed (0.97 and $1.01 \AA$) in pipemidic acid trihydrate (Fonseca et al., 1986).

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post-Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1259). Services for accessing these data are described at the back of the journal.

References

Albert, A. (1979). Selective Toxicity. The Physico-Chemical Basis of Therapy, 6th ed. London: Chapman \& Hall.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fonseca, I., Martinez-Carrera, S. \& Garcia-Blanco, S. (1986). Acta Cryst. C42, 1618-1621.
Hughes, M. N. (1981). The Inorganic Chemistry of Biological Processes, 2nd ed. New York: Wiley.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Structure Determination Software Programs. Version 5.10. Bruker AXS, Madison, Wisconsin, USA.
Shen, L. L. \& Pernat, P. G. (1985). Proc. Natl Acad. Sci. USA, 82, 307-311.

Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1999). C55, 768-770

2,2-Bis(2-methoxyphenyl)-4-methyl-8,9-epoxy-7,8,9,10-tetrahydro- $2 H$-benzo $[h]$ chromene

Kandasamy Chinnakall, ${ }^{a} \dagger$ Hoong-Kun Fun, ${ }^{b}$ Kamaras Sriraghavan ${ }^{c}$ and Vayalakkavoor T. Ramakrishnan ${ }^{c}$
${ }^{a}$ Department of Physics, Anna University, Chennai 600 025, India, ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {' Department of Organic Chemistry, University of }}$ Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 24 November 1998; accepted 21 December 1998)

Abstract

In each independent molecule of the title compound, $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}$, the pyran ring adopts a half-chair conformation and the tetrahydrobenzene ring is in a flattened-boat conformation. The phenyl rings are orthogonal to each other; in one of the enantiomers, they form dihedral angles of $74.66(6)$ and $54.38(6)^{\circ}$ with the pyran ring, while in the other enantiomer, these angles are 76.42 (6) and 54.15 (5) ${ }^{\circ}$.

Comment

Epoxides are versatile reactive intermediates in organic synthesis because they are very susceptible to attack by several nucleophiles (Smith, 1984). Furthermore, the role of arene oxides in biological systems continues to attract attention due to their cytotoxicity, mutagenicity and carcinogenicity (Boyd \& Sharma, 1986). The structure determination of the title compound, (I), was carried out in order to elucidate the molecular conformation.

(I)
\dagger Visiting Post-Doctoral Fellow, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

